

UNIVERSIDADE FEDERAL DA BAHIA PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO

PLANO DE ENSINO-APRENDIZAGEM DO COMPONENTE CURRICULAR Semestre Letivo Suplementar

DADOS DE IDENTIFICAÇÃO E ATRIBUTOS¹

			AIS PARA ANÁLISE DE DADOS EM BIOLÓGICAS					И	DEPARTAMENTO OU EQUIVALENTE Coordenação Acadêmica - IBIO				
CARGA HORÁRIA (estudante)						MODALIDADE/ SUBMODALIDADE				<u> </u>	PRÉ-REQUISITO (POR CURSO)		
T 34	T/P	P 34	PP	Ext	E	TOTAL 68	Dis	Disciplina-Teórico e Prática		ica	Não há		
CARGA HORÁRIA (docente/turma)						MÓDULO ²			2		SEMESTRE DE INÍCIO DA VIGÊNCIA		
T	T/P	P	PP	Ext	E	TOTAL	Т	T/ P	P	P P	Ex t	E	
-	-	-	-	-	-	-	1 5		15				Semestre Letivo Suplementar

EMENTA

Através do método de aprendizagem baseada em problemas, divulgar o ambiente R para estudantes de biologia e seu uso no ensino de matemática e estatística, aplicadas à resolução de problemas na área de ciências biológicas. Introduzir os alunos à estrutura e uso da linguagem, abordando alguns conceitos matemáticos, como funções, distribuições, confecção de gráficos e alguns conceitos de estatística.

OBJETIVOS

OBJETIVO GERAL

Conhecer e utilizar métodos matemáticos e ferramentas e computacionais para tratamento e análise de dados usando a plataforma computacional de livre acesso, ambiente R

OBJETIVOS ESPECÍFICOS

Reconhecer o potencial de uso prático das funções matemáticas na descrição de processos naturais.

Perceber a computação com uma ferramenta capaz de executar muitos tipos de tarefas e uma quantidade imensa de tarefas ao mesmo tempo.

Conhecer o ambiente de programação R, um sistema coerente, livre, de código aberto, que pode ser usado para ensino de matemática, estatística e simulações

Investigar e discutir modelos matemáticos usados na biologia.

Usar os modelos matemáticos para fazer previsões e discutir o potencial de uso e limitações.

Usar as ferramentas matemáticas e computacionais para a compreensão do racional por trás da análise de dados.

¹ Os "dados de identificação e atributos" devem estar registrados conforme especificado no Programa do Componente Curricular e disponível no site da Superintendência Acadêmica (SUPAC). O único campo a ser preenchido nesse tópico do formulário é o que diz respeito ao módulo de vagas ofertadas.

² Conforme Resolução CONSUNI 01/2020 e CAE 01/2020, é possível flexibilizar o disposto na Resolução CONSEPE 02/2009.

CONTEÚDO PROGRAMÁTICO

Dimensão conceitual

Semana 1 - Apresentação dos diferentes tipos de linguagem computacional. Mudança de perspectiva quanto ao uso do computador, programação e liberdade de ações. Introdução ao ambiente R, noções iniciais sobre o ambiente.

Semanas 2 e 3 – Explorando os instrumentos matemáticas úteis em ciências biológicas, sua história e aplicação

Semana 4 - Introdução à análise de modelos na biologia – equações a diferenças.

Semana 5 e 6 - Entendendo os processos a partir da sua dinâmica – noções de variação média e variação instantânea – derivadas.

Semana 7 e 8 - Utilizando os modelos dinâmicos para fazer previsões e extrapolações. Integrais.

Semana 9 e 10 - Modelos teóricos na ecologia – equações diferenciais

Semana 11 a 13 Análise de modelos na ecologia: estabilidade, pontos críticos e suas aplicações.

Dimensão procedimental

Semana 1 – Entendimento prático de como funciona uma linguagem computacional, como colocar o computador para executar uma tarefa de seu interesse. Execução de tarefas simples, como cálculos usando funções matemáticas de variadas complexidades. 1º semana.

Semanas 2 e 3 - Uso do R para exploração de funções matemáticas (polinômios, funções trigonométricas, logaritmo, exponencial)

Semana 4 – Entendimento do uso de um modelo matemático para expressar um processo dinâmico com tempo discreto. Análise teórica dos modelos, potencial de investigação de previsões e aplicações

Semana 5 e 6 – Entendimento sobre processos dinâmicos em tempo ou espaço contínuos, uso de limites e derivadas, aplicação a casos práticos

Semana 7 e 8 – Uso da integração, aplicação das ferramentas analíticas a casos reais,

Semana 9 e 10 – Montagem de sistemas de equações diferenciais para representar sistemas complexos. Análises das propriedades dos sistemas. Uso de integração numérica e otimização computacional pra solução de sistemas complexos sem solução analítica

Semana 11, 12 e 13. Execução de análise de sistemas, interpretação de resultados e aplicações.

Dimensão atitudinal

Valorização do papel dos softwares de código aberto, livres e gratuitos na educação e no desenvolvimento técnico e científico.

Perceber como a matemática evoluiu junto com as civilizações nos últimos 4 mil anos, suas ligações com a ciência e com a política.

Pensar sobre o papel do investigador na elaboração de um modelo, como compatibilizar demandas conflitantes como complexidade do modelo e capacidade de análise e compreensão dos processos que se quer representar.

Perceber as vantagens da modelagem no planejamento, porém reconhecendo suas limitações, especialmente para previsão.

METODOLOGIA DE ENSINO-APRENDIZAGEM

A disciplina tem como base de planejamento o uso da aprendizagem baseada em problemas. Os temas a serem abordados serão problematizados e resolvidos por grupos de alunos ou individualmente.

A disciplina contará com webconferencias introdutórias, praticas da linguagem sob supervisão remota, produção de material pelos estudantes sobre os temas a serem abordados. As webconferencias serão gravadas e disponibilizadas no moodle.

Dependendo da necessidade dos estudantes, serão produzidos materiais de apoio em vídeo, a ser disponibilizado no moodle da disciplina. Porém, dada a natureza prática da maioria das atividades a necessidade de atendimentos virtuais fora do horário da disciplina também será avaliada.

AVALIAÇÃO DA APRENDIZAGEM

A avaliação será feita de maneira continuada, ao longo da disciplina. Os estudantes irão produzir materiais que irão compor a nota final, junto com a autoavaliação.

Durante o processo de elaboração, haverá participação do docente, sanando dúvidas e auxiliando no processo.

Como os materiais a serem produzidos envolverão etapas de discussão em grupo e correção antes da submissão da versão final, a nota será baseada no número de produtos entregues em relação ao número total de produtos da disciplina. Outra nota será atribuída pelo estudante a ele mesmo, com base na avaliação de sua performance. O cálculo da nota final será feito com base na média simples entre as duas notas (autoavaliação e dos produtos entregues)

REFERÊNCIAS

REFERÊNCIAS BÁSICAS

Bolker, B. 2008 Ecological Models and Data in R. Princeton University Press. 408pp.

Crawley, M. J. The R Book. Wiley, New York, 2007.

Matthiopoulos, J. 2011. Howto be a quantitative ecologist: the A to R of green mathematics and statistics. Wiley.

Otto, S.P. and Day, T. (2007) A Biologist's Guide to Mathematical Modelling in Ecology and Evolution. Princeton University Press, New Jersey. 732pp.

Venables, W.; Smith, D.M; & R Development Team An Introduction to R. Manual online.

REFERÊNCIAS COMPLEMENTARES

Carlos Alzola and Frank E. Harrell An Introduction to S and the Hmisc and Design Libraries"

John Verzani. Using R for Introductory Statistics. Chapman & Hall/CRC, Boca Raton, FL, 2005.

Petra Kuhnert and Bill Venables An Introduction to R: Software for Statistical Modelling & Computing.

William N. Venables and Brian D. Ripley. Modern Applied Statistics with S. Fourth Edition. Springer, New York, 2002.

Outros Recursos

<u>The R Journal</u>: periódico mantido pelo R Project, onde são publicados artigos sobre novos pacotes, dicas para programadores e usuários, e uso do R nas mais variadas aplicações estatísticas.

<u>Journal of Statistical Software</u>: tem sido o principal veículo sobre análises e novos pacotes no R. Muitos dos principais pacotes usados em ecologia e biologia têm artigos com exemplos de aplicação neste periódico. Há fascículos especiais, incluindo um sobre <u>uso do R em ecologia</u>, e outro sobre <u>análises de redes</u> (com ênfase para dados de ciências sociais).

Docente(s) Responsável(is) à época da aprovação do Plano	p () () () () () ()	
Nome:Eduardo Mariano Neto	Assinatura:	Counds Mariand Ne W
Nome:	Assinatura:	
Aprovado em reunião de Departamento (ou equivalente):	em Assinatura do Ch	// uefe

ANEXO I CRONOGRAMA³

Código e nome do componente:	BIOC81
Nome do/s docente/s:	Eduardo Mariano Neto
Período:	Semestre Letivo Suplementar

Data ou período de realização	Unidade Temática ou Conteúdo	Técnicas ou estratégias⁴ de ensino previstas	Atividade/ Recurso⁵	CH Docente ⁶	CH Discente ⁷
11/09	Introdução ao ambiente R e programação	Videoconferência, práticas de computação, material de leitura de apoio	Computador, programas gratúitos a serem instalados pelos discentes, Material disponibilizado no Moodle	4	
18 a 25/09	Funções matemáticas úteis na biologia	Videoconferência, práticas de computação, material de leitura de apoio	Computador, Material disponibilizado no Moodle	8	
02 a 30/10	Análise dos modelos na biologia	Videoconferência, práticas de computação, material de leitura de apoio	Computador, Material disponibilizado no Moodle	20	
06 a 13/11	Criação de modelos teóricos	Videoconferência, práticas de computação, material de leitura de apoio		8	

³ Esta é uma sugestão de cronograma. A sua adoção é facultativa, sendo possível, a critério do(s) professor(es), adotar outra forma de expressar aspectos temporais e de uso de dispositivos tecnológicos. Para o SLS, recomenda-se pensar a organização do componente em unidades ou temáticas amplas, considerando períodos equivalentes à carga horária de uma ou mais semanas

Síncronas: Aula dialogada (ao vivo) pelos professores em interatividade com os estudantes; Apresentação de artigos ou temas pelos estudantes com mediação dos professores); Aula invertida (*chat* a partir de texto ou vídeo com mediação dos professores); Chats com pequenos grupos.

Assíncronas: Aula expositiva (preleções feitas pelos professores e gravadas como videoaulas); Aula invertida (fórum de discussão a partir de texto ou vídeo) com mediação dos professores; Discussão de tema (problematizado) com X postagem dos estudantes e mediação dos professores; Cocriação de textos colaborativos pelos estudantes com mediação dos professores; Desenvolvimento de atividades/tarefas pelos estudantes: resenha, confecção de vídeos, modelos, questionários, peças jurídicas, roteiros, guias de estudo, produções artísticas com mediação dos professores.

⁴ Possibilidades de técnicas e estratégias de ensino-aprendizagem:

⁵ As palavras **Atividade** e **Recursos** aqui acompanham a classificação do Moodle. As atividades podem ser: Fórum, chat, wiki, tarefas, jogos, escolha, glossários, base de dados, pesquisa, questionário etc. Os recursos podem ser: arquivo, URL, livro, pasta, rótulo etc.

⁶ Indicar carga horária também de elaboração e realização.

⁷ Indicar o tempo previsto para que o estudante realize a atividade/tarefa.

20/11 a 004/12	Investigando propriedades dos modelos e		12	
	predições			

Anexo II

Projeto para Atividade Interdisciplinar

Título:								
Tipo de atividade - marque o(s) tipo Pesquisa bibliográfica Pesquisa em campo Extensão em comunidade	Pesquisa em labora Curso extensão (ex Outro: Discussão e e desenvolvimento	ecução) análises de textos						
Disciplinas integradas nesta ativida								
Genética/Biologia celular Botânica	Ecologia							
Zoologia	Embriologia Química							
Biologia da Conservação	Física							
Biologia Evolutiva	Matemática							
Educação	Outras (Comunicação s	ocial)						
		,						
Docentes envolvidos (no mínimo dois):	Área do conhecimento	Carga horária						
Domínios de cada disciplina a sere	Domínios de cada disciplina a serem explorados:							
Disciplina 1 Disciplina 2	Disciplina 3	\neg						

Descrição sintética da atividade (para divulgação entre os estudantes):

Conservação biológica