

UNIVERSIDADE FEDERAL DA BAHIA PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO

PLANO DE ENSINO-APRENDIZAGEM DO COMPONENTE CURRICULAR Semestre Letivo Suplementar

CÓDIGO NOME)ME									DEPARTAMENTO OU EQUIVALENTE			
BIO153		Genética de Populações									Coordenação Acadêmica do IBIO				
CARGA HORÁRIA (estudante)						MODALIDADE/ SUBMODALIDADE					— Е	PRÉ-REQUISITO (POR CURSO)			
т	T/P	Р	PP	Ext	Е	TOTAL									
34	34					68	Disciplina/Teórico-Prática					ca 	Não há		
CARGA HORÁRIA (docente/turma)					MÓDULO						SEMESTRE DE				
T/P	Р	PP	Ext	E		TOTAL	т	T/P	Р	PP	Ext	E	INÍCIO DA VIGÊNCIA		
							12	12					Semestre Letivo Suplementar		
			1		1			1				<u> </u>			

OBJETIVOS

GERAL:

Fornecer subsídios para gerar habilidades para reconhecer e trabalhar com os processos genéticos-evolutivos populacionais.

ESPECÍFICOS

Conceituais:

- 1. Compreender processos e padrões evolutivos envolvendo populações naturais e domesticadas.
- 2. Dominar os princípios de equilíbrios genéticos.
- 3. Aplicar testes estatísticos na análise de estruturas populacionais.

Procedimentais:

- 1. Coletar dados genéticos utilizando marcadores moleculares.
- 2. Estimar as possíveis consequências evolutivas envolvendo populações.

Atitudinais:

1. Respeitar a opinião dos colegas durante os debates.

CONTEÚDO PROGRAMÁTICO

TEÓRICO

- 1. Equilíbrio de Hardy-Weinberg (EHW).
- 2. Equilíbrio para genes ligados ao sexo.
- 3. Genes multialélicos.
- 4. Deriva genética atual e remota.
- 5. Migração.
- 6. Seleção.
- 7. Equilíbrio de Wright.
- 8. Índices de fixação e diversidade genética.
- 9. Aproximação por difusão.
- 10. Teoria da coalescência.
- 11. Testes estatísticos populacionais.
- 12. QTLs (genética quantitativa).

PRÁTICO

- 1. Manutenção do EHW.
- 2. Identificação de fatores seletivos.
- 3. Cálculos para equilíbrio ligado ao sexo.
- 4. Análise de locos multialélicos.
- 5. Detecção de endogamia.
- 8. Seleção natural modelo experimental teórico.
- 9. Efeitos da deriva genética modelo experimental teórico.
- 10. Fluxo gênico entre populações modelo experimental teórico.
- 11. Distâncias genéticas: exercício.
- 12. Parâmetros de diversidade biológica: exercícios.
- 13. Testes estatísticos: exercícios.

METODOLOGIA DE ENSINO-APRENDIZAGEM

Serão adotadas aulas teórico-práticas síncronas semanais. As práticas, sendo constituídas por resolução de exercícios, estudos de caso, seminários, debates.

ORIENTAÇÕES PARA SEMINÁRIOS

- Os seminários deverão ser apresentados INDIVIDUALMENTE na aula programada neste cronograma, baseado em artigo científico ESCOLHIDO PELO ESTUDANTE, EM ACORDO COM O PROFESSOR (o que será discutido em momentos assíncronos, professor-estudantes).
- Os alunos terão com o professor um momento de discussão do artigo, antes da apresentação. O tempo de apresentação do seminário será de, NO MÁXIMO, 15 MINUTOS.
- A avaliação levará em conta os seguintes critérios: escolha adequada do artigo (10%), uso adequado de recursos audiovisuais (10%), conteúdo (40%), clareza e objetividade (30%), uso adequado do tempo (10%).
- Todos os apresentadores de seminário deverão estar presentes pontualmente no início da aula quando será definida a ordem de apresentação. Aos que não atentarem a esta indicação, haverá penalização na nota final no critério uso adequado do tempo.
- A apresentação do seminário deve ser feita no dia acordado no início do semestre. A apresentação em outra data, quando possível, passará a ter peso 50% menor.

Atividades extraclasses (Resolução CAE 1/2016)

Extraclasse: resolução de exercícios extraclasse a serem discutidos nas aulas de revisão 15h40. A disciplina poderá contar com apoio de monitores voluntários de acordo com o processo seletivo em andamento.

Todas as atividades acima mencionadas, serão realizadas neste SLS, de acordo com as recomendações recebidas, atentando para a adoção de abordagens metodológicas ativas, participativas, colaborativas e criativas que privilegiem o protagonismo dos estudantes como construtores de saberes, de conhecimentos e de produções autorais; que favoreçam aprendizagens colaborativas com uso de múltiplas linguagens e ambientes virtuais e que incluam mediação docente propositiva em termos de conteúdos e de acompanhamento da aprendizagem, em consonância com os princípios da Educação *Online*. Serão utilizadas:

- 1. Webconferências e aulas interativas ao vivo
- 2. Aula Invertida
- 3. Problematizações, temas geradores (*chats* e ao vivo)
- 4. Simulação através de programas disponíveis on-line
- 5. Pesquisa.

AVALIAÇÃO DA APRENDIZAGEM

As avaliações serão processuais e formativas, em contínuas apreciação e verificação na evolução do estudante, incluídos nesses processos, a apresentação de seminários, debates realizados e demais atividades, quando a participação do estudante será aferida.

As avaliações constarão de:

Avaliação contínua - peso 2,0 Atividade *Masterpop* - peso 2,0 Atividade Desafio - peso 1,0 Atividade Ombros de Gigantes - peso 2,0 Seminário - peso 1,0 Atividade não presencial *Singlepop*: 1,0

TOTAL: 90

REFERÊNCIAS

BÁSICA

- HARTL, D. L. (2008). Princípios de genética de população. FUNPEC-Editora, Ribeirão Preto, SP.
- HARTL, D. L. & CLARCK, A. G. (2010). Princípios de genética de populações. 4 Ed. Artmed, Porto Alegre, RS.
- MATIOLI, S. R. FERNANDES, F.M.C. Biologia Molecular e Evolução. 2ª ed Holos Editora.. 201

COMPLEMENTAR

- RIDLEY, M. Evolução. 3ª Ed. Porto Alegre, Editora Artmed. 2006
- FUTUYMA, D.J. Biologia evolutiva. 2a Ed. Sociedade Brasileira de Genética. 1992.
- POPULUS (software, simulações), https://cbs.umn.edu/populus/download-populus, 2018.
- KIMURA, M. and T. OHTA. The average number of generations until fixation of a mutant gene in a population. Genetics 61, 763-771. 1969
- FELSENSTEIN, J. PopG genetic simulation program. https://evolution.gs.washington.edu/popg/. 2016

ı

Docente(s) Responsável(is) à época da aprovação do Plano de ensino-aprendizagem:					
Nome: FLORA MARIA DE CAMPOS FERNANDES					
A.					
Assinatura:					
Aprovado em reunião de Departamento (ou equivalente): em//_					
Assinatura do Chefe					

ANEXO

CRONOGRAMA¹

Código e nome do componente:	BIO153 - Genética de Populações		
Nome do/s docente/s:	Flora Maria de Campos Fernandes		
Período:	08/09/2020 - 11/12/2020		

Data ou período de realização	Unidade Temática ou Conteúdo	Técnicas ou estratégias de ensino previstas	Atividade/ Recurso	CH Docente	CH Discente
11/09-02/10	Processos e padrões genético-populacio nais	Webaulas (sala virtual), Web conferências, chats	Síncronas e assíncronas	28h	20h
09 a 23/10	Masterpop e desafio	WEbconferências e chats	Síncronas	12h	12h
30/10-06/11	Simulações de processos	Softwares	Assíncrona	12h	12h
13 a 27/11	Equilíbrio seleção/mutação; Princípio de Wahlund; endogamia remota; índices de fixação; aproximação por difusão	Webaulas (sala virtual), Web conferências, chats	Síncronas e assíncronas	18h	12h
4 a 11/12	Avaliações e seminários	Webaulas (sala virtual), Web conferências, chats	Síncronas e assíncronas	<u>12h</u>	12h

-

¹ Esta é uma sugestão de cronograma. A sua adoção é facultativa, sendo possível, a critério do(s) professor(es), adotar outra forma de expressar aspectos temporais e de uso de dispositivos tecnológicos. Para o SLS, recomenda-se pensar a organização do componente em unidades ou temáticas amplas, considerando períodos equivalentes à carga horária de uma ou mais semanas